B i MACQUARIE
= University

RESEARCHV ot X
* DATA&SOFTWARE ==

DRAMA - A brief overview

- MACQUARIE
=8 University

ww.rds.org.au

Research Data and Software
Australian Astronomical Optics,

Macquarie University.
September 2019

s MACQUARIE
=8 University

DRAMA — A brief overview

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6

5.1

INEFOAUCHION. .. ns 3
Astronomical INStIUMENTS ... 4
A DRAMA task from the outSide ... 7
1 od 5 10} s -
KICKS ittt bbb bbb e s s b bbb bbb nan
TTIGEOTS oot
Parameters.....vevniscienneenns

Parameter monitoring..............

Overall ...

SDS and Data structures in DRAMA

Real-time aSPECLS....ccverircererereesesres s
DRAMA tasks working together ...
DRAMA tasks from the inSide.....vnnrrnce s 14
Programming languages ... 14
Multiple concurrent actions, and multi-threading..........ccooeeererirneenenns 15
The structure of @ DRAMA tasK.....cooceeeneneeeneneneseesessesesesesessesssssssessessanns 16
The structure of @ DRAMA aCtiON.....ceeveecceeeeeese e sesessesns 16
DRAMA MESSAZES ..uceuvrriirississssssssssssssssssss s sssssssssssssss s sssssssns 20
Other DRAMA faCIlItIES ...t s saens 21
DRAMA 2ttt bbb bbb bbb s s s s
DRAMAZ? actions

SUMMATY ..
DRAMA GLOSSAIY ..ouvvurerirrnerssrsnssesssssesssasesses 26

1 Introduction

DRAMA is a software environment that simplifies the writing of multi-tasking
data acquisition systems. These systems may involve a number of different
types of computers and operating systems. It was originally written at AAO! in

1 Originally the Anglo-Australian Observatory, later the Australian Astronomical
Observatory, now Australian Astronomical Optics.

ww.rds.org.au Page 3 of 28

s MACQUARIE
=8 University

the 1990s and has been used extensively at AAO and other observatories.
From 2015,, it has been re-invigorated through the development of DRAMA?2,
which builds on the original DRAMA system but which adds support for multi-
threading. This makes it much easier to code single tasks that need to support
multiple concurrent operations. DRAMA has always supported such tasks, but
multi-threading support makes the coding much simpler. Additionally,
DRAMAZ2 takes advantage of C++14 features to provide a much more modern
API for DRAMA.

This document attempts to introduce the concepts behind DRAMA. It is not a
DRAMA manual, and it contains almost no examples of actual code. It is
intended simply as an introduction to what DRAMA has to offer. It should also
serve as useful background for anyone who is about to dive in to the detailed
DRAMA API manuals in order to write a DRAMA task or to understand how an
existing task works.

2 Astronomical instruments

Although a general-purpose system such as DRAMA can be used in many
different ways, if you want a feel for its design and philosophy, it helps to look
at the sort of problem it was originally designed to solve.

Look at what is being used during a typical night when an optical telescope
such as the AAT? is being used.

Light comes through the telescope itself, through a spectrograph, onto a
detector, and the resulting data is? displayed, recorded, and processed, at least
sufficiently to gauge the quality of the data being obtained. There are a
number of separate instrumental systems involved here (telescope,
spectrograph, detector) which need control software, and a number of jobs
that are being performed purely in software (data recording, data display and
data processing). Some software also has to be in overall control of all this,
coordinating all the other parts, and there must be a way (inevitably GUI-
based) for humans (observer, telescope operator, etc) to interact with the
system. Taking a very big-picture view of all this, there are a number of
separate, reasonably big ‘blocks’ to the system, and these are shown in Figure
1.

2 The 3.9m Anglo-Australian Telescope, at Siding Springs in NSW, Australia.
3 OK, pedants. The datums are...

ww.rds.org.au Page 4 of 28

B a MACQUARIE
=8 University
Note that what this block diagram shows is intended to be a set of ‘functional
blocks’. Some are purely software, but some, like the telescope and

spectrograph, will be physical instruments that have software components.

It's worth noticing that any telescope may operate with a number of different
instrumental combinations, but that the same structure may be maintained,
and many of these ‘blocks’ may be reused in different combinations. The
telescope will probably always be there, and while there may be different
spectrographs in use, it may be that the same detector sub-system is used for
different spectrographs. Data recording, display and processing will be similar
for most instruments, and may be identical for many, especially if they are
written in a sufficiently general way.

‘ Overall GUl
control

r—‘l'—\

(_lﬁ

Telescope Spectrograph Detector
— — —
Data processing Data recording Data display
— — N U

Figure 1 Overall observing structure

So it makes sense for the structure of the software system to match that of the
blocks shown here. If each of these functional blocks has its own associated
software block, and if these software blocks exist independently (as opposed
to being just a part of some large monolithic single program) then new
instrument combinations can be created by, for example, introducing a new
spectrograph, and the corresponding overall software control system merely
requires a new spectrograph software block.

All of this is fairly obvious, and is true of almost any sufficiently complex
software system. DRAMA predated the general popularity of C++, but most of

ww.rds.org.au Page 5 of 28

s MACQUARIE
=8 University

the considerations that went into DRAMA can be seen nowadays in object-
oriented design: modularity, encapsulation, well-defined interfaces. The
difference is that DRAMA implements all this at a high level, that of individual
tasks, while C++ does it at a much finer level.

In a DRAMA system, we would have a separate software task for each of these
functional blocks. ‘Task’ in this context generally means an independent,
executable program, capable of being linked separately and run separately.
(Usually, each DRAMA task runs as part of a system, as shown in Figure 1, but
it can be run separately and can be tested separately - the testing is an
important aspect.) This is the meaning of ‘task’ as used by most operating
systems?.

It is, of course, possible for any of these tasks to be implemented using
multiple tasks. In practice the AAT telescope control task comprises eleven
separate DRAMA tasks, but only one of these, the ‘main’ TCS task, is normally
visible to the rest of the system and all communication goes through ite.

So what DRAMA provides is a model of how such a task looks to the outside
world, and the libraries that can be used to implement such a task.

There are two parts to this. There is how a DRAMA task appears externally,
and there is what it looks like internally. The external model is really quite
simple, but is very flexible, particularly in the way data structures are used to
pass information. The internal details can get quite complicated, and part of
the aim of the DRAMA2 work was to simplify the coding of a typical DRAMA
task, particularly in terms of how it handles concurrent operations. The
following sections describe first how a DRAMA task looks from the outside,
and then looks at what goes on inside to produce such a task.

As with all systems, there is some nomenclature to get used to. Words like
‘action’ and ‘kick’ and ‘trigger’ and even ‘parameter’ have particular meanings
in a DRAMA context.

4 The two can work together, of course. A DRAMA task can be built out of C++ objects,
and there will often be a single C++ object that implements the task itself.

5 But note that on systems such as older versions of VxWorks, a task may not have its
own separate address space, and one can argue about whether it is really a task or a
thread.

6 For diagnostic purposes, however, it is possible to send messages - for example,
enquiring about detailed task status - to individual component tasks, either from the
command line or some other engineering interface.

ww.rds.org.au Page 6 of 28

s MACQUARIE
=8 University

3 A DRAMA task from the outside

A DRAMA task is a separate task that has a name, which it uses to register with
the DRAMA system, and such a task can be sent messages through the DRAMA
message system. [t can send messages back. It is expected to remain
continually responsive to messages sent to it.

3.1 Actions

A DRAMA task implements a set of named ‘actions’. An action can be invoked
by sending an ‘obey’ message to the task, specifying the name of the action
and, optionally, parameters’. For example, a telescope control task might have
an action called ‘SLEW_TO’ which might take parameters describing the
position of the target object. A detector control task might have an action
called ‘EXPOSE’ that takes a parameter giving the required exposure time.

An action does not have to complete immediately, although many do. When it
does complete, a message will be sent back to the requesting task. An action
that has been invoked (through an ‘obey’ message) but has not yet completed
is described as being ‘active’.

A task may have any number of actions active at the same time. It is possible
to have multiple concurrent instances of the same action, but this is unusual
and needs more careful handling.

3.2 Kicks

It is possible to send a message to an active action in a task in order to
influence the course of that action. An obvious example would be the case
where, for some reason, a task wants to cancel an action it has invoked in
another task. If it gets cloudy, one might want to cancel a detector control
task’s ‘EXPOSE’ action. Or one might want to extend the exposure time, which
modifies the course of the action but does not cancel it. In the AAT control
system, one of the component tasks calculates a new demand position for the
telescope every twentieth of a second, which it sends in a message to another
component task whose job it is to apply this demand position. Such a message

7 Strictly, what is sent is a single ‘argument structure’, but this can be arbitrarily
complex and can contain any number of sub-structures that can be treated as
individual parameters. We tend to describe actions as having a number of named
parameters, but they’re actually named sub-structures of the one argument structure.

ww.rds.org.au Page 7 of 28

s MACQUARIE
=8 University

sent to a task in the context of an active action is termed a ‘kick’ message; it
‘kicks’ the action in a certain way.

Just like an ‘obey’ message, a kick message can have an arbitrarily complex
data structure associated with it, and this can be used to supply parameter
values for the kick.

The requirement that a DRAMA task remain always responsive to incoming
messages comes partly from the need to be able to send ‘kick’ messages at any
time and have the task act on them without delay.

3.3 Triggers

An action can send a message back to its invoking task at any time. This might,
for example, be a progress report. Such a message is called a ‘trigger’
message8. Trigger messages can be used for any purpose, and - like most
DRAMA messages - can include an arbitrarily complex data structure that can
be used to supply associated information.

3.4 Parameters

A DRAMA task can also have any number of named parameters. Each of these
is (you can probably guess this by now) an arbitrarily complex data structure
consisting of named components. One DRAMA task can send a ‘get’ message to
another DRAMA task specifying the name of such a parameter, and it will be
sent back a reply message that contains a copy of that parameter.

Itis also possible for one DRAMA task to send a ‘set’ message to another
DRAMA task in order to set the value of a named parameter. In practice this
feature is not used very often; a ‘set’ effectively changes the value of a
parameter behind the back of the owning task, and it’s usually better to
implement an action called something like ‘SET_name’ which takes the new
parameter value as its argument structure. If you do that, then the task-
specific code in the owning task knows that the parameter has been changed,
and usually that is something you do want to know.

But task parameters really come into their own when you monitor them.

8 ‘Kick’ is a fairly obvious name for a message that influences the course of an action.
‘Trigger’ for a reporting message, somewhat less so. All systems have some historical
quirks.

ww.rds.org.au Page 8 of 28

s MACQUARIE
=8 University

3.5 Parameter monitoring

A DRAMA task can ‘monitor’ any number of parameters in other DRAMA tasks.
Whenever the value of a monitored parameter changes, each task that is
monitoring that parameter receives a DRAMA message that has a copy of the
new value of the parameter.

This is useful in a number of circumstances, but is particularly useful for GUIs.
A very convenient way to write a GUI for a DRAMA task is to have the GUI
monitor a number of parameters in one or more other tasks. Usually, such
parameters exist purely in order to be monitored. When a task makes a
change that needs to be reflected in a GUI, it simply changes the value of one of
these parameters. The GUI task gets a message with the new parameter value,
and it can modify its display to reflect it. This is much, much, simpler than
requiring the monitored task to send explicitly send a message to a GUI task
whenever it makes a change it wants to see reflected in the GUIL. No
housekeeping is required in the monitored task, other than setting the
parameter value; it does not have to be aware of the identity of the GUI task,
or even if it exists at all - if the GUI task is not running, everything continues to
work.

A number of instrument control systems, such as EPICS, operate as
‘distributed databases’, where the overall system is seen mainly as a collection
of database values all of which are linked, so that as one changes, this change
is picked up by other parts of the system. In such systems, the values involved
can be very small-scale quantities, such as the temperature of a detector or a
particular control voltage. DRAMA parameter monitoring can also be used to
set up this sort of interaction, and its design was originally influenced by such
systems. DRAMA is usually used as a ‘command-based’ system, where tasks
send explicit commands (usually at quite a high level, like ‘task an exposure”)
to other tasks. The display of values in a GUI, however, is something one wants
to be triggered by changes to individual small items such as temperatures or
voltages, and parameter monitoring works very well in such cases®. It also
means that DRAMA has the flexibility to be used in systems that make use of
database concepts, or at least in some sort of hybrid manner.

9 As an example, in the AAT TCS, the raw encoder readings, both incremental and
absolute, for both the telescope axes are read by a separate ‘Encoder’ task which writes
them to a parameter which is monitored by an engineering section of the control GUI
task, which displays them both as binary patterns and as RA and Dec positions.

ww.rds.org.au Page 9 of 28

s MACQUARIE
=8 University

3.6 Overall

And that is pretty much all there is to a DRAMA task, as far as its interaction
with the rest of the system goes. It has a name, it supports a number of named
actions, and it maintains a number of named parameters. Its actions can be
kicked, and its parameters can be monitored. That is a very simple interface.
(Itisn’t unlike the interface of a C++ class, which has a number of methods
that can be called, and a number of instance variables whose values can be
accessed - so long as they are made public. DRAMA tasks can even inherit
from other DRAMA tasks, in a way, but that comes later...)

Note though, that a lot of the power of this simple interface comes from the
use of structured data for message arguments and for parameters. That needs
a little more detail, before we look at the internals of a DRAMA task.

3.7 SDS and Data structures in DRAMA.

SDS - the Self-defining Data System - is a library that provides a lot of the
flexibility in DRAMA. It creates hierarchical structures in memory. Each
structure can contain any number of named items, which can be other
structures or can be primitive data (floating point values, integer values, or
characters, as either single quantities or as multi-dimensional arrays). There
are routines to create such structures, to locate named items within them, to
get their type and dimensions, and to search through structures to see what
they contain. (‘Self-defining’ refers to the fact that all the details about the
structure contents - although not their meaning - are contained within the
structure itself.) The structures are mutable when created, although they can
be ‘exported’? in a fixed form into either files or into contiguous regions of
memory. The various enquiry and data access routines work on either the
mutable or fixed forms.

The size and complexity of SDS structures are limited only by machine
resources. Itis quite common to store multi-megabyte images or even data
cubes in SDS structures. The size of DRAMA messages is also essentially
unlimited?!?.

10 ‘Serialised’ might be a more modern term.

11 When a task registers or sets up a communication path with another task it has to
specify the maximum amount of message size to be allocated for the purpose. However,
the size that it can specify is limited only by machine memory constraints.

ww.rds.org.au Page 10 of 28

s MACQUARIE
=8 University

When DRAMA sends an ‘obey’ or other message, that message can include a
fixed SDS structure as an argument.

This means that almost anything, including large images, can be included in
DRAMA messages'2.

As an example, the section on ‘kick’ messages mentioned such a message being
sent every twentieth of a second to one of the TCS tasks to give it the new
telescope demand position. Figure 2 shows the contents of the argument
structure associated with this ‘kick’ message. The details are unimportant, but
it can be seen that there are a lot of values specified in this message, each
named, and all look as if they might be something to do with telescope
position (TAI is the time, for example). This is not a large message - but it is
sent twenty times a second.

ArgStructure Struct
TAT Double 57308.22076
A Double 0.7387388122
B Double -0.6959722159
AV Double 7.291577214e-05
BV Double -4.401439213e-09
NEW_POSN Int 0
TRACKING_ OK Int 1
AZ Double 4.257689448
EL Double 0.9576399682
AZV Double 1.027695049%e-06
ELV Double -5.597003429e-05
DOME DIRECT Int 0
STZERO Double 4.354585811
MJIDZERO Double 57308.21938
XGD Double 4.2095517e-09
YGD Double -6.914826319%e-11
AUTOGUIDE REQ Int 0
GUIDING_ ZERO Int 0
APPHA Double 0.7388443341
APPDEC Double -0.6952868241
NEW TARGET Int 0

Figure 2 AAT TCS Kick argument structure

12 For truly huge amounts of data, where the overheads of copying into DRAMA
messages would be excessive, DRAMA also provides a very efficient alternative ‘bulk
data’ sub-system that uses shared memory to eliminate most data copying overheads.

ww.rds.org.au Page 11 of 28

s MACQUARIE
=8 University

SDS can be used as a hierarchical file format, and you will find files with a .sds
extension in many DRAMA-based systems, but its real power comes from the
ability to create, manipulate, and transmit complex hierarchical, searchable,
data structures in memory.

DRAMA makes use of SDS almost anywhere it needs to transmit data values.
Rather than send a fixed set of parameters as arguments to an action, it sends
an SDS structure. The receiving action can see what it has been sent, searching
the structure for named items that it expects as parameters. When it finds a
parameter, it can see what form it takes: it might be a scalar, it might be a
multi-dimensional array, and the task may use the parameter in different
ways depending on just how it has been specified. If it is not present, it can use
a default value instead. When a task responds to a command, it sends back an
SDS structure as part of its response. This can be anything from a single byte
set to some status code, or it can be a comprehensive set of diagnostic
information.

Almost anything can be put into an SDS structure, and almost any SDS
structure can be sent as part of a DRAMA message, or used as a DRAMA task
parameter.

3.8 Real-time aspects

DRAMA tends to be described as a ‘soft’ real-time system. Usually this is taken
to mean that it can be expected to provide a reasonably reliable real-time
response, but you should not expect it to be able to handle requirements such
as ‘this message must be handled within n microseconds of its being
generated’. However, this is selling it somewhat short.

[t is true that DRAMA usually runs on systems like UNIX or OS X, which are
certainly not normally ‘hard’ real-time systems. However, it also supports
VxWorks, which is regarded as a proper real-time system, and could easily be
ported to similar systems. AAO systems that require a proper real-time
response are implemented using DRAMA tasks running on VxWorks. Hard
real-time is not easy, but DRAMA does have facilities that support it. Even
under ordinary non-real-time UNIX, you can get a real-time response by
writing purpose-built drivers. In particular, it is possible for a real-time
thread, or an interrupt service routine, to send a DRAMA message to a DRAMA
task. So a high-priority thread or interrupt routine can be used to get the
required real-time response, and can work in conjunction with a DRAMA task.
Such a thread cannot, of course, wait for a DRAMA message itself, but it can
communicate directly with a task that does.

ww.rds.org.au Page 12 of 28

s MACQUARIE
=8 University

One of the requirements of the original DRAMA design was that it should be
capable of handling all aspects of data acquisition. At AAO we use OS X to write
and test DRAMA tasks that will eventually be deployed on VxWorks. Having
the same DRAMA API available on a range of platforms, including those that
operate at the hard real-time end of the spectrum, makes software
development much simpler. It becomes much easier to develop even those
parts of the system that will run on systems that can be tricky to work with;
testing hard real-time programs is never easy, but it helps if most of the less
time-critical code can be developed and tested on other systems.

3.9 DRAMA tasks working together

The diagram shown in Figure 1 shows a typical DRAMA task configuration. An
overall control task communicates with a number of individual tasks, each
with a particular area of responsibility. In this case, the task layout follows the
overall system structure quite closely.

The detector control task, for example, is responsible for all control of the
detector. At least, that is how it looks to the rest of the system. In practice, it
probably is really just an interface to the detector control hardware, and may
even be just a thin layer between the other DRAMA tasks and a separate non-
DRAMA layer of specialised control software geared to detector hardware.

The important point is that it presents to the outside world a detector system
that responds to commands such as ‘EXPOSE’, ‘READOUT’ and the like, and
which provides a set of status commands and/or parameters that show the
state of the detector. It might have a command like ‘RECORD’ that takes a
filename as an argument, or it might just have a parameter that is a copy of the
last-read image. There are a number of ways such a task could be specified.

In this example, the task layout is relatively static. Most of these tasks can be
loaded as the system starts up and stay running all the time. And these tasks
are relatively large and complex, handling all aspects of whatever it is they
control.

But it is equally possible to have a system that uses a set of small, transient,
tasks that come into existence briefly, do one thing, and exit. A good example
is the general purpose DRAMA utility program ‘ditscmd’. This is a command
line utility that takes as command line arguments a target task name, and
some additional arguments. It runs, connects to the target task, sends the
required message, waits for a response, and exits. So, the command:

ditscmd FRED GET_ STATUS

ww.rds.org.au Page 13 of 28

s MACQUARIE
=8 University

will invoke the GET_STATUS action in the task that has registered in the
DRAMA system as ‘FRED’. It will wait for the reply, which presumably will be
accompanied by an SDS structure that contains details about the status of the
task, and will display the contents of that structure. This program can also be
used to display the contents of a task parameter:

ditscmd —gv FRED STATUS_ PARAM

will send a ‘parameter get’ command to FRED, requesting the value of the
‘STATUS_PARAM’ parameter, and will display the result. (The -g indicates a
‘get’ command, and the v indicates ‘verbose’, which makes ditscmd list the
whole hierarchical structure of the parameter, including all the item names
and types.)

It is possible to use DRAMA as the basis of a command line-based data
reduction system, each command starting up a new task that performed some
specific data reduction task on files and with parameters named in its
arguments.

In the end DRAMA is a tool, and because it is a very flexible tool, it can be used
in a number of different ways - not always those envisaged by its creators.

4 DRAMA tasks from the inside

This section looks briefly at how a DRAMA task is structured internally to get
the effects already described.

4.1 Programming languages

First, a note about languages. The original DRAMA API used C, and DRAMA
was implemented entirely using C. To make it easier to write GUIs for DRAMA,
a Tcl/Tk interface was written, and it is possible - and was common - to write
DRAMA tasks in Tcl, using Tk to provide a GUIL.

It is possible to write a DRAMA task that combines both C and Tcl/Tk in order
to create a task that implements most of its actions in C but also provides its
own Tcl/Tk-based GU]J, all within the same task. An alternative is to write a
DRAMA task entirely in C (or, more usually nowadays, C++) and have it set
parameters that a separate Tcl/Tk DRAMA task can monitor., as described
earlier. This arrangement allows the C-based DRAMA task to run without a
GUI if required, but allows the GUI task to be loaded when needed. It also
tends to lead to a simpler, more modular design for each task.

ww.rds.org.au Page 14 of 28

s MACQUARIE
=8 University

There is also a Java interface for DRAMA, and a DRAMA task may equally well
be written using Java.

A Python interface for DRAMA is has recently been implemented. It is not yet
as complete as the older Tcl/Tk interface or JAVA interfaces, in that you can’t
yet implement all features using Python. But Python is now being used for
scripting and GUI can be implemented using many python packages.

Another alternative for tasks that need to provide a GUI is to use Qt. Since Qt is
a C++ library, it can be used fairly straightforwardly with DRAMA.

4.2 Multiple concurrent actions, and multi-threading

Most of the issues with the internals of DRAMA tasks arise from the need to
support multiple concurrent actions. For example, a spectrograph might have,
amongst other things, a grating that can be set to a range of different angles, a
filter wheel that can be set to any one of a number of different positions, and a
slit that can be opened to any of a range of widths. One might design the
spectrograph control task to have a SLIT action that took a width parameter, a
GRATING action that took an angle as a parameter, and a FILTER action that
took either a filter name or a number as a parameter?3,

The original DRAMA design came from an era when multi-threading was
unusual and was not provided by many operating systems!4 So DRAMA did
not use multi-threading to implement concurrent actions. Instead, it used
what amounted to a form of ‘cooperative multi-tasking’ within a task.

Because most existing DRAMA tasks use this original DRAMA design, it will be
described first. Note, however, that the more recent DRAMA2 API implements
multiple concurrent actions through the use of multiple threads. This will be
described later. DRAMA?2 also provides a much more modern, C++14-based
API, and this means that the code for a DRAMA2 task can look rather different
to that for a DRAMA task. However, with the exception of the multi-threading
aspects, most of the concepts are the same as those in the original DRAMA.

13 Because the parameter passed when the FILTER action is invoked is an SDS
structure, the code can look to see if the parameter has been specified an integer or a
character string, and interpret it accordingly.

14 To put things into context, nor was the socket() call provided on all machines!

ww.rds.org.au Page 15 of 28

s MACQUARIE
=8 University

4.3 The structure of a DRAMA task

It is convenient to think of a DRAMA task as having a ‘fixed part’ and a ‘task-
specific part’. The ‘fixed part’ is the same for all DRAMA tasks, and provides
the basic flow of control for the task.

In essence, the fixed part waits for a message from another task, and handles
it. There are a number of internal DRAMA messages that are handled entirely
within the fixed part. Messages connected with the actions defined by the task
are handled by callbacks from the fixed part to routines in the task-specific
part that have been registered as the ‘action handlers’ for the various actions.
This description applies to both the original DRAMA design and to DRAMA?Z,
but the way action handlers are expected to act is significantly different
between the two APIs. What follows now applies only to the original DRAMA
design.

4.4 The structure of a DRAMA action

Remember that the DRAMA concept requires that an action can be
interrupted?!> by a ‘kick’ message. For a DRAMA task to remain responsive, this
means that any action handler invoked in response to a message must return
immediately'¢, because the fixed part cannot read that message until it does
so.

Some actions will be able to complete entirely in a sufficiently short time. For
example, an action that merely returned a status report could do this easily.
An action that slewed a telescope to a new position, or which handled a
detector exposure of many seconds, clearly cannot return ‘immediately’.
DRAMAZ? can handle these cases using multi-threading, but in the original
DRAMA system, such actions have to be ‘staged’ - split into separate stages,
each of which can be handled very quickly.

15 This is not ‘interrupted’ in the sense of a hardware interrupt handled by an interrupt
service routine; it just means that once an action has started, it must still be possible to
send a message to it that will be acted upon immediately. The most useful example to
think about is the case where the message is a request that the action be cancelled.

16 Just what ‘immediately’ means depends on the context; if an action handler takes a
tenth of a second before it returns, the task will be unresponsive for that tenth of a
second. For some tasks that would be acceptable, for others this would be too long. For
most ‘soft’ real-time systems, something like a tenth of a second is usually acceptable,
and is a good rule of thumb.

ww.rds.org.au Page 16 of 28

s MACQUARIE
=8 University

Take the case of an ‘EXPOSE’ action sent to a detector control task. This will be
invoked by a message that requests that the EXPOSE action be started, and
which supplies an SDS structure containing the details of the exposure - these
could be quite complicated, but at the very least will probably include an
exposure time.

When the task in question starts up, its main() routine is invoked. This
performs some initial setup for the task, and then calls the standard DRAMA
routine that runs the DRAMA main loop (the loop that reads new messages,
calls the routines that handle them, and then reads a new message). As part of
the setup, the DRAMA parameters for the task are usually created, and action
handlers are registered for all the various actions supported by the task.

So when the message requesting the EXPOSE action is received, the DRAMA
fixed part knows which routine in the task-specific part was registered as the
action handler for that action, and it calls it. This action handler routine can
tell that it has been called as the result of an ‘obey’ message being received,
and it can access the SDS structure included with the message. It can extract
the parameters such as the exposure time from that structure, and can initiate
the exposure, presumably by communicating in some way with the detector
hardware. It can probably start the exposure!?, but it certainly can’t make the
whole task wait until the exposure completes - otherwise there would be no
way in which a request to cancel the exposure would get through. So it does
what it can in an acceptable time, then returns to the DRAMA fixed part.

When we say it ‘returns to the DRAMA fixed part’ all we mean is that the
action handler routine returns to its caller. Since it was called from the fixed
part, the fixed part now has control again. But before the routine returns, it
calls a standard DRAMA routine that lets it tell the fixed part what it wants to
happen next - it makes a ‘request’ of the fixed part. It can request one of a
number of things:

e [tcanrequest thatits next stage be invoked immediately. In this case,
it is essentially saying ‘I can carry on right now, and would like to, but
I'm returning to give you a chance to see if there’s anything come in
that needs to be handled.” (And one thing that could have come in
might be a request that this action be cancelled, of course.)

17 Just how easy this is, of course, depends on the detector hardware. It may require a
complex interchange of (non-DRAMA) messages with the hardware before the
exposure starts, in which case even this initial sequence will have to be ‘staged’. This is
a more advanced topic.

ww.rds.org.au Page 17 of 28

s MACQUARIE
=8 University

e [tcanrequest thatits next stage be invoked after a specified time.
This can be used to allow the action to run in a ‘polling’ mode;
constantly rescheduling on a regular basis to see how some external
system is going!8.

e [tcanrequest thatits next stage be invoked when a new message
arrives in the context of this action. That is, there is nothing more it
can do at the moment, but it is expecting something to happen which
will cause it to be sent a message. (Often this is a message from
another task with which this action is communicating - it might have
requested a connection to another task and is waiting for that to be
set up. In some cases, it can be more complex - it may be waiting for a
hardware interrupt whose service routine will generate a DRAMA
message, for example. Or it may just be idling and is waiting to be told
what to do next. DRAMA supports a lot of possibilities.)

e [tcanrequest that this action end now. This usually means the action
has either completed successfully or has run into an unrecoverable
error.

e It canrequest that not only should the action complete now, but that
the whole task should exit.

In all these cases (well, except the case where the task exits) the fixed part
now takes control again and goes back into its main ‘read a message, handle it,
read a new message’ loop. This scheme, with all actions split up into small
discrete stages, allows any number of actions to be active concurrently, and
the fixed part will reschedule them, stage by stage, as required.

At start-up, action handlers are registered for all actions, and kick handlers are
registered separately for those actions that need them. Generally, any action
that is going to do anything other than complete immediately will need to
register a kick handler.

[t is possible for an action handler to specify a new routine to serve as the
action handler for the current action. This allows a style of coding where, each
time an action stages, it specifies a new routine to handle the next stage of the
action. There are some actions that move through a clear sequence of separate
stages, and where this is the case, this style can be rather easier to follow. The
alternative is to have the same action handler set for the whole of the action,
in which case the code in that action handler needs to check just why it has

18 For those who like to know how such things are arranged, in this case the fixed part
will schedule a timer that will send it a message once the specified time has expired. So
then all it has to do is re-enter its normal message loop.

ww.rds.org.au Page 18 of 28

s MACQUARIE
=8 University

been invoked each time it is called (is this a new invocation of the action, or is
it a restaging, or has a message been received, etc?). It is because the action
handler can be changed dynamically in this way that it is convenient to be able
to specify the kick handler separately, as kicks to the action may come through
at any time. Each time an action completes, the action handler reverts to that
specified at start-up, which is generally what is wanted.

This scheme is essentially a form of ‘cooperative multi-tasking!®’ within a
single task. This is the form of multi-tasking used by early versions of both
Windows and MacOS, and is the only form available in the absence of support
for pre-emptive multi-tasking. So at one time this was quite a familiar way of
programming. (And now that this is no longer the case, we have DRAMAZ,
which essentially takes advantage of the pre-emptive way in which multiple
threads work within tasks.)

In a multi-tasking operating system this is very much a second-rate way of
multi-tasking, mainly because it allows a rogue - or just plain badly written -
task to monopolise the whole system. This objection is relatively unimportant
in the context of a DRAMA task, where usually the same programmer is
responsible for the whole task, and can hardly complain about the poor
standard of coding. What it does have is one significant advantage, and one
significant disadvantage:

e The advantage is that forcing the code for an action to return to the
DRAMA fixed part on a regular basis not only allows concurrent
actions to run, it also allows actions to be cancelled easily. There is
never a question of how one cancels a thread that is blocking on some
operation, since threads aren’t allowed to do that sort of thing. Also
note that what actually happens is not that the action is cancelled
from outside, which can often be problematic, but that the action is
sent a request that it cancel itself, which it can usually do cleanly.

e The disadvantage is that while some actions can be easily coded as a
set of short stages that can easily return to the fixed part as required,
some actions are very awkward to code in this way. (And it is no
longer a programming style that many programmers are familiar
with.) Any action that involves a long sequence of exchanges of
messages with either another task or a piece of hardware does not fit
naturally into this style. It can be done, but it is awkward, frustrating,
and for these reasons, error prone. It also encourages programmers

19 See, for example, https://en.wikipedia.org/wiki/Computer_multitasking

ww.rds.org.au Page 19 of 28

s MACQUARIE
=8 University

to play a little fast and loose with the requirement that a task always
remain responsive. (“I'll send off this message, I should get the reply
almost immediately, it'll be OK to block briefly to read that reply”. And
then when the hardware hangs and the message doesn’t come back at
all, the whole task is dead to the rest of the world.)

The original DRAMA does provide a scheme for handling the problem of
wanting to write sequential code in a sequential way?29, but this is an advanced
topic, and not covered in this brief overview.

4.5 DRAMA messages

The fixed part of a DRAMA task is continually waiting for and reading DRAMA
messages, usually from other tasks but occasionally, as in the case of messages
generated by internal timers, from itself. Many of these messages are handled
internally by the fixed part itself. The remainder are handled by those routines
registered as the action handlers or the kick handlers for the various actions.

The action handler can be invoked for any of quite a large number of reasons,
and not all will be listed here, given that this is supposed to provide just an
overview of DRAMA. But the main reasons an action handler or kick handler
can be invoked are:

Obey The original entry to the handler, when the action has just
been invoked.

Kick The action has been kicked. An SDS structure, as supplied
by the kicking task, provides details.

Reschedule The action was waiting for a set time, and that time has
now expired.

Signal Code running in the current task has sent a signal to this
action. This can have come from an interrupt handler,
another action, or a separate thread of the task?!.

Complete The action was waiting for a message, and this has now
arrived.

20 It involves the routine DitsActionWait().

21 Even in the original DRAMA design, a task can make use of threads (usually using the
POSIX thread library) independent of the main DRAMA thread, and these can send
signals to actions run by the main thread.

ww.rds.org.au Page 20 of 28

s MACQUARIE
=8 University

4.6 Other DRAMA facilities
Amongst the things DRAMA allows an action to do are:

e Load another task, either on the local or on a remote machine.

e Establish a connection to another task, either local or remote.

e Invoke anaction in another task. The progress of that action can be
followed through trigger messages sent from that task, and a message
sent on completion.)

e Kickanaction it had previously invoked. (Which can include
requesting that the action cancel itself.)

e Modify one of the current task parameters. (If any of these are being
monitored by other tasks, these will be notified of the change.)

e Get the value of a specified parameter of another task.

e Setthe value of a specified parameter of another task. (Not often
used.)

e Output a message to the user. (The message is sent to the action that
invoked the current action, and so on down the chain until it reaches a
user interface of some sort, at which point it gets output. DRAMA is
very careful that all messages are output in the context of an action,
and are passed back to the ultimate invoker of that action.) A message
can be flagged as an error message, in which case it can be displayed
as such when output.

e Logamessage to a log file kept by the task.

e [nitiate a transfer of bulk data to another task, with a minimal copying
of data. In order to make this as efficient as possible, the mechanism
used for bulk data makes use of memory shared between processes
and is different to that used for normal DRAMA messages.

4.7 Supporting Standards

DRAMA makes it easy to support standards across sets of tasks. Standard
functionality can be inherited and the sub-classed as needed. For example, for
AAT instrumentation, all tasks are required to provide a core set of Actions
and Parameters. The default implementation is provided by package inherited
by all tasks, but can be overridden as needed. This allows the higher-level
control task to presume that all tasks implement this functionality, simplifying
its design. In addition, any AAT instrumentation camera task obeys an
additionally standard common to all camera tasks, with a default
implementation provided. To implement a camera control task with allow
required functionality, actions and parameters, requires implementing only

ww.rds.org.au Page 21 of 28

s MACQUARIE
=8 University

four methods (Initialise, Expose, Readout, Shutdown). This is all available in
the C language interfaces.

5 DRAMA2

There were two specific aims that drove the development of DRAMAZ2.

The original DRAMA design had evolved over time, and had resulted in a
mixture of subroutine libraries, all designed to be called from C. Although
these had a distinct hierarchy, it was not always clear which library provided
which facility. A set of C++ classes had also evolved, which simplified writing
DRAMA programs considerably, but the design of these reflected their
evolutionary nature. It was felt that DRAMA needed a modern, coherent, C++
API. Moreover, the new C++11 and C++14 standards made it much easier to
provide some of the facilities such a coherent API required.

Almost all systems on which DRAMA was now used supported multi-
threading, and this was obviously the way to implement multiple concurrent
actions within a task.

This means that both the code and structure of a program written for
DRAMAZ2 look quite different to that of a program written for the original
DRAMA design. Remarkably, however, the core of the DRAMA system needed
only very minor changes to accommodate DRAMAZ2, and DRAMA2 really is just
a new API for DRAMA rather than a new implementation of DRAMA.

Because this document is intended only as an introduction to DRAMA
concepts, and as such as so far managed not to show any actual DRAMA
code??, the detailed changes to the API can be ignored here. The multi-
threading aspects of the new system are important, and will be covered here,
but the underlying concepts described so far are still important when it comes
to understanding DRAMAZ.

5.1 DRAMAZ2? actions

In DRAMAZ, you can have actions that work just the same, staged, way as
actions in the original DRAMA design. Such an action is embodied by an object

22 Although there is no shortage of example code in the DRAMA documentation!
ww.rds.org.au Page 22 of 28

s MACQUARIE
=8 University

of a class that inherits from a base DRAMA ‘message handler’ class?3, and this
merely provides a more modern interface to the old way of working.

Much more interestingly, you can also have actions that are handled by
separate threads. Such actions are embodied by an object of a class that
inherits from a base DRAMA ‘threaded action’, and provides a method that is
called when the action is invoked 24. See Figure 3

class Actionl : public thread::TAction{
public:
Actionl(std::weak ptr<Task> theTask):
TAction(theTask) {}
private:
void ActionThread(const sds::Id &) override {
// This is where the real work is done.
MessageUser ("Hello World - from a thread");

}
b

Figure 3.DRAMA 2 Threaded action implementation

This method, since it runs in a separate thread, does not have to constantly
return to the fixed part in order to keep the overall task responsive to
incoming messages, and as a result it is free to do things that would have been
seriously anti-social in the original DRAMA design, such as issuing blocking
read calls, waiting for semaphores, even diving into long CPU-intensive
calculations. It can do all of these without getting in the way of other actions,
and the programmer can code a long sequential series of such operations just
as a block of sequential code.

This is quite liberating!
There are also alternative approaches to implementing actions including
simple functions and methods of various any desired class

However, there is always a ‘however’; there is always at least a small catch. If
such an action handler is blocking, waiting for some external event (which
may never happen, of course), how do we interact with the action? How does a
kick message get through to it? How do we cancel such an action?

23 Since a DRAMA action handler is really just something that receives messages in the
context of a specific action.

24 The base class is drama::thread::TAction, and the method that handles invocation is
called ActionThread().

ww.rds.org.au Page 23 of 28

s MACQUARIE
=8 University

(One might imagine cancelling an action by cancelling the thread, using
something like pthread_cancel(), but this is a dangerous operation that often
leaves resources in an uncertain state. Java deprecated its equivalent routine,
and the C++ std::thread class does not provide such a routine directly2s. Even
more to the point, all you can do this way is cancel the thread; there’s no way
to implement more subtle interactions.)

So there is a price to pay for being allowed to block in this way in an action
handler. It is that any such blocking operation must be done in such a way that
it can be interrupted if necessary.

This is not a trivial thing to arrange, but DRAMAZ2 goes out of its way to make
things easy.

The simplest case is where the action handler has done all it needs to for the
moment and just wants to wait for a kick message to tell it what to do next.
DRAMAZ2 provides a routine that simply waits for such a message, with an
optional timeout.

More complex cases are where the action handler is doing something that is
not so obviously something that DRAMA can be expected to deal with. For
example, the action handler may simply make a read() call, which normally
will not return until whatever it is trying to read becomes available.

What the action handler has to do is this. Just before it does something that
will block, it creates a new object that inherits from a base ‘kick notifier’ class.
This class starts a new background thread that can receive any kick messages.
The kick notifier and the action handler code then have to work together to
arrange to interrupt whatever blocking operation is taking place.

The simplest case would be a hard CPU loop which is able to make a test at
regular points through the loop and bail out if necessary. The kick notifier
provides an enquiry routine that can be used to ask if a kick has been received,
and this could be used to abort such a CPU loop. See Figure 4. But that’s the
really easy case. A read() call is trickier.

The key is that there is a way to interrupt any given blocking, but different
operations have to be interrupted in different ways. For example, a read() can
be interrupted by sending a signal to the reading thread, or - depending on
the driver - by closing the open file descriptor from another thread. The kick
notifier has a ‘kicked’ method that gets invoked when a kick is received, and

25 You may be able to access the underlying POSIX thread and use pthread_cancel() on
it, but you'd be well advised to attempt nothing of the sort.

ww.rds.org.au Page 24 of 28

s MACQUARIE
=8 University

this can be overridden so that it interrupts the blocking operation in the action
handler thread using such a technique. The read() will return with an error,
and the action handler code can then check with the kick notifier to ask what
happened

void ActionThread(const drama::sds::Id &) override {
MessageUser ("Action Starting");
// Creates a another thread waiting for kicks.
// Destructor will clean it up.
drama::thread: :KickNotifier unblockObj(this);
for (unsigned i = 0; i1 < 50 ; ++i)

{
for (unsigned j = 0; j < 100000000 ; ++3j)
{
}
MessageUser("Alive");
if (unblockObj.WasKicked())
{
MessageUser("Action Was kicked.");
return;
}
}

MessageUser("Action complete");
Figure 4.DRAMA 2 Kickable hard loop

The point behind all this is that there is no single way that can interrupt all
blocking operations cleanly, but DRAMAZ2 provides a way for the blocking
thread to respond to a kick (in a sub-thread) and to interrupt its blocking
action in the appropriate way.

Because threads are very lightweight items, and can be created very quickly as
needed, they can be used very effectively in DRAMA2 programs to solve a
variety of problems. A DRAMA2 action handler can split itself into a number of
concurrent threads, and often does if it needs to communicate with a number
of other tasks.

ww.rds.org.au Page 25 of 28

B MACQUARIE
=8 University

6 Summary

This introduction has only scratched the surface of what DRAMA provides, but
it should have provided enough background to give an idea of what DRAMA

can do.

For more information, there is a very detailed DRAMAZ2 manual available from
AAO, and most of the documentation for the original DRAMA design is

available on the web http://drama.aao.org.au/ or Tony Farrell
(tony.farrell@mg.edu.au)

7 DRAMA Glossary

AAO

AAO MQ

Action

Action handler

ADAM

“Australian Astronomical Optics”. Until 2010 the AAO was
called the “Anglo-Australian Observatory”, and then from
2010 to 2019, was “The Australian Astronomical
Observatory”.

A department of Macquarie University which has taken
over the instrumentation development roles of the old
“Australian Astronomical Observatory” and is part of the
“Australian Astronomical Optics” collaboration.

A named operation that can be performed by a DRAMA
task. It can have parameters associated with it through an
SDS structure. It is invoked by sending an ‘obey’ message
to the DRAMA task and is handled by a routine registered
as the ‘action handler’ for that action. A DRAMA task can
have a number of concurrent actions active.

A user-written routine called first when a DRAMA action
is invoked. In the original DRAMA design it is expected to
complete almost immediately and return to the fixed part,
which will call it again as required as the action
progresses. Most user code in a DRAMA task takes place in
action handlers. In DRAMAZ2 an action handler can run in a
separate thread and does not need to keep returning to
the fixed part.

Astronomical Data Acquisition Monitor. A pre-cursor to
DRAMA. Originally written at RGO for Perkin-Elmer
minicomputers, and modified at ROE for VAX/VMS

ww.rds.org.au Page 26 of 28

B MACQUARIE
=8 University

DRAMA

DRAMA2

IMP

Kick

Kick handler

Monitor

Obey

Parameter

SDS

computer systems. Many of the concepts used in the
original DRAMA design came from ADAM.

The AAO distributed data acquisition environment.
DRAMA is not an acronym - it comes from “ADAM redone,
about right”, which only people who solve cryptic
crosswords will follow, unfortunately.

A modern API for DRAMA, making use of C++14 facilities,
that supports multiple concurrent actions through multi-
threading.

Inter-process Message Passing - the DRAMA sub-system
used for inter-process communication.

A DRAMA message sent to an already running action,
usually to influence the progress of that action. Acommon
use of a kick is to cancel an action.

A user-provided routine called when a DRAMA action is
kicked.

A DRAMA task can request that it be notified whenever a
specified parameter of a given task changes, in which case
it is sent a copy of the parameter with its new value. This
is commonly used by GUI tasks to display the state of the
tasks for they provide an interface.

One of the types of message that can be sent to a DRAMA
task. An obey message includes the name of an action to
be invoked and an optional SDS structure containing
named parameter values.

Is used in two different ways in DRAMA. An action has
named parameters passed in the SDS structure used to
invoke it, which control the details of the action. A task has
parameters, which are named SDS structures that are
visible to other DRAMA tasks, and which can be monitored
by such tasks.

Self-defining Data System. A subroutine library that allows
arbitrarily complex structures containing named sub-
structures and named primitive objects (integer or
floating point values, either single values or arrays) to be
created in memory and serialised either in memory or as

ww.rds.org.au Page 27 of 28

B MACQUARIE
=8 University

Task

TCS
Trigger

VxWorks

ww.rds.org.au

disk files. It provides a full set of routines for searching
and accessing such structures.

Means what it means for most operating systems: a self-
contained execution unit with its own address space,
scheduled pre-emptively along with other tasks.

Telescope control system.

A DRAMA message sent back from an executing action to
the action that invoked it, usually as a progress report of
some sort.

A commercial ‘hard’ real-time operating system,
developed by Wind River.

Research Data and Software

Australian Astronomical Optics,

Macquarie University.
105 Delhi road, North Ryde, NSW 2113
T:+61 (02)9372 4800
http://drama.aao.org.au/

http://www.aao.gov.au

http://www.rds.org.au

tony.farrell@mg.edu.au

Page 28 of 28

